Из метана получить пропан

Отличие между природным газом, бензином, керосином, лигроином, газойлем (дизельным топливом) и мазутом состоит только в длине цепи углеводородов, входящих в их состав. На их физические свойства еще немного влияет изомерия, но не очень существенно – изомеры имеют несколько более низкие температуры плавления и кипения, чем линейные углеводороды.

Все эти углеводороды принадлежат к семейству алканов – насыщенных углеводородов. Простейшим углеводородом является метан, имеющий один атом углерода и четыре атома водорода (CH4). Далее за ним следует этан, который состоит из двух атомов углерода и шести атомов водорода (C2H6). Метан и этан при комнатной температуре не сжижаются даже при высоких давлениях, поэтому представляют собой классический природный газ.

Далее следуют пропан и бутан, которые при высоких давлениях можно превратить в жидкость и при обычных температурах (пропан сжижается при высоком давлении, бутан уже при небольшом), их называют «жирным» газом. Пропан и бутан применяют в зажигалках и в автомобилях в качестве замены бензина.

Пентан, следующий за бутаном, уже будет жидким при комнатной температуре, и с него начинается «бензиновый» сектор углеводородов. По мере увеличения длины углеродной цепи, температуры плавления и кипения углеводородов линейно растут. Наиболее ценным является именно бензиновый сектор с пентана до декана (углеводорода, состоящего из цепи 10 атомов углерода и 22 атомов водорода).

Автомобилей все больше, а бензиновых морей не наблюдается

Количество автомобилей в мире все возрастает. Их число в 2010 году перевалило за миллиард, а к 2035 году, по подсчетам Международного энергетического агентства (IEA), количество автомобилей составит 1,7 млрд. Для сравнения: отметка в 500 млн была пройдена в 1986 году, и всего за 24 года количество автомобилей в мире удвоилось.

Сколько будет нужно бензина, и какого

В настоящее время в Европе 78% бензиновых автомобилей. Несмотря на то, что в перспективе источники энергии для автомобилей, вероятно, станут более разнообразными, рост числа транспортных средств не будет способствовать снижению спроса на бензин. Более того, рост экологических требований к бензину будет требовать все более качественного и в то же время не слишком дорогого топлива. В частности, это относится к таким стандартам, как «Евро». Так, в 2015 году ожидается очередное ужесточение в этом направлении – переход на стандарт класса «Евро-6». В России с 1 января 2013 года оборот топлива ниже класса «Евро-3» запрещен.

Тяжелые углеводороды можно разбить на более легкие – до бензиновой фракции. Данный процесс называется крекингом. Тяжелая молекула делится надвое – на предельную и непредельную молекулу. Например, эйкозан (углеводород, состоящий из 20 углеродных атомов) разбивается на молекулу декана и децена (непредельного углеводорода этиленового ряда). Крекинг позволяет увеличивать производство бензина, а также повышать его октановое число, так как одновременно происходят реакции полимеризации образовавшегося непредельного углеводорода, затем полимер повторно разбивается и снова сшивается, следствием реакций на основе радикального механизма является превращение линейных углеводородов в разветвленные.

Однако запасы даже тяжелой нефти со временем будут уменьшаться, а стоимость ее добычи – повышаться. В то же время США переживают бум добычи сланцевого газа, а в будущем не исключено, что будет начата промышленная разработка природного газа из газовых гидратов, пробная добыча с океанского дна которых, в частности, была проведена Японией в феврале 2013 года.

Как получить бензин из метана

Сланцевый газ представляет собой практически чистый метан. А можно ли из метана получить бензиновую фракцию (жидкое топливо)? Одна из технологий производства из метана бензиновых углеводородов была открыта еще в 20-х годах XX века, однако она требует больших энергозатрат . Эта технология предусматривает разложение метана при высоких температурах до этилена с выделением водорода. В настоящее время для этого используются катализаторы (свинец, кадмий, таллий или марганец), и температура порядка 500-900 °С. Далее применяют ограниченную полимеризацию этилена (по аналогии производства всем известного полиэтилена, только обрывают ее на стадии нужной фракции).

Иной, но не мене известной технологией производства жидкого топлива из природного газа является процесс Фишера-Тропша. При высокой температуре метан может взаимодействовать с парами воды (или кислородом в очень ограниченном количестве), образуя угарный газ и водород (так называемый «синтез-газ»). Эта реакция идет при температуре 800-900 °C на катализаторе, в качестве которого выступает никель с оксидом алюминия, а при более высоких температурах, порядка 1500 °C катализатор уже не требуется. Впоследствии в присутствии катализатора (железо-кобальт) из синтез-газа производятся жидкие углеводороды, и одновременно получается вода как побочный продукт. Возможна также более простая реакция – простое получение из угарного газа и водорода метилового спирта. Однако по причине того, что метиловый спирт сильно ядовит, замена бензина метиловым спиртом не представляется возможным.

Читайте также:  Как узнать год выпуска шины континенталь

Новые технологии

Оба способа производства жидких углеводородов по указанным выше технологиям требуют огромных затрат энергии, и поэтому пока малорентабельны. Однако стартап Siluria Technologies, расположенный в Лос-Анджелесе, пытается решить данную проблему. Появился этот стартап в 2008 году, отколовшись от компании Cambrios Technologies Corporation.

В качестве перспективного направления, позволяющего решить проблему стоимости получения синтетического жидкого топлива (не обязательно только бензиновой фракции), стартап посчитал термическую реакцию разложения метана . И для решения этой проблемы, по мнению стартапа, нужно подобрать удачный катализатор, чтобы удешевить разложение метана до этилена.

Подробностей исследования стартап не раскрывает, однако отмечает о существенном прогрессе. Так, стартап на компьютерах моделирует термический распад метана и перебирает еженедельно сотни потенциальных катализаторов. По словам сотрудников компании, превращение сланцевого газа в синтетическое жидкое топливо может быть настолько удешевлено, что это станет дешевле, чем получение аналогичных продуктов из нефти и совершит революцию на мировом энергетическом рынке . Запасы сланцевого газа также ограничены, однако если удастся найти достаточно дешевый способ добычи газа из газовых гидратов, то надобность в нефти почти отпадет.

Также синтетические углеводороды отличаются практически идеальными экологическими характеристиками – там не может быть ни сернистых соединений, ни ароматических углеводородов, ни азотсодержащих органических соединений, которые способствуют загрязнению атмосферы. Поэтому такое топливо будет способно соответствовать самым строгим экологическим стандартам, так как отделить ненужные газы на той или иной стадии техпроцесса будет легко. А выделить все нежелательные соединения из нефти намного сложнее, и до конца не представляется возможным.

К 2014 году стартап планирует запустить демонстрационный завод, правда, о его месторасположении пока не сообщается. Однако, если действительно удастся найти относительно дешевый способ производства жидкого топлива из природного газа, то это можно будет считать завершением «нефтяной» эпохи и переходом к «газовой» эпохе, что приведет к кардинальному изменению энергетической карты мира. А если удастся найти хотя бы рентабельный способ выделения природного газа из газовых гидратов, то об энергетическом кризисе можно будет забыть, по меньшей мере, на несколько тысяч лет, ведь запасы гидратов на океанском дне превышают запасы всего остального газа (в том числе и сланцевого) как минимум в сотню раз.

Моторное топливо из метана

Проблема получения моторных топлив из альтернативного сырья – природного или попутного газа, угля и др. – издавна привлекала внимание специалистов. Ведь запасы нефти рано или поздно иссякнут. Поэтому усилия ряда лабораторий были направлены на разработку методов получения синтетического моторного топлива.

В последнее время эти изыскания получили дополнительный стимул из-за ужесточения требований к чистоте автомобильного выхлопа. Искушение создать новое топливо (или добавку к нему), обеспечивающее чистый или хотя бы "облагороженный" выхлоп, было столь же велико, сколь и трудно реализуемо.

Метан, как химическое сырье, может стать базой для производства большинства органических соединений, ныне получаемых из нефти, в том числе и крупнотоннажных производств топлив для транспорта и энергетики. Правда, современные методы переработки этого природного сырья пока недостаточны для реализации его потенциала, так как в результате их использования получают продукты, себестоимость которых выше аналогов нефтяного происхождения. Однако исследования и разработки последних лет, по-видимому, позволят не только ликвидировать это отставание, но и приведут к появлению продуктов более дешевых, чем их аналоги нефтяного происхождения.

Природный газ как химическое соединение достаточно инертен. Вот почему первая стадия его переработки – превращение в более реакционно-способный синтез-газ (смесь оксидов углерода и водорода), далее каталитическими методами преобразуемый в моторное топливо. Существуют различные способы получения синтез-газа: паровая или углекислотная конверсия и окисление воздухом или чистым кислородом. Альтернативные пути дальнейшей переработки синтез-газа – так называемый синтез Фишера-Тропша и синтез метанола. Первый из них приводит к получению некоего эквивалента нефти – смеси углеводородов, для которых требуется дальнейшая переработка. На втором базируется крупнотоннажное производство (мировые мощности близки к 30 млн. т), хорошо освоенное промышленностью. Его главный недостаток – неблагоприятная термодинамика, препятствующая образованию нужного соединения в значительной концентрации. Это обусловливает необходимость многократной циркуляции газовой смеси через реактор и влечет за собой значительный расход электроэнергии. В итоге растет себестоимость бензина, получаемого из метанола.

В нашем институте при участии специалистов из других организаций реализован ряд проектов, позволяющих повысить эффективность и снизить затраты на переработку природного газа и другого углеродосодержащего сырья в более ценные энергоносители. Применительно к первой стадии получения синтез-газа доктор химических наук Ю. А. Колбановский предложил решения, основанные на сжигании природного газа в модифицированных дизельных и компрессионных двигателях, работающих в необычном режиме. Идея была реализована в 1998 г. в промышленной установке мощностью 10000 м 3 синтез-газа в 1 ч.

Читайте также:  Замена маслосъемных колпачков киа спектра

Два очевидных преимущества делают данный процесс привлекательным для удаленных регионов страны. Прежде всего, в нем в качестве сырья может выступать природный газ низкого давления, в том числе поднимающийся из скважин, не пригодных к эксплуатации в обычных условиях. Кроме того, для окисления исходного сырья подходит воздух, а двигатель может быть использован одновременно и для осуществления химической реакции, и по прямому назначению – для получения электроэнергии. Однако заметим: применение воздуха приводит к высокому содержанию азота в синтез-газе (50-60%), что неблагоприятно сказывается на его дальнейшей переработке.

Интерес представляет разработанный кандидатом технических наук В. Н. Кубиковым совместно с коллегами аппарат для окисления природного газа кислородом – генератор синтез-газа, выполненный с учетом опыта конструирования ракетных двигателей. Производительность единицы объема такой установки, кстати, имеющей небольшие размеры, в десятки и сотни раз превышает возможности промышленных аналогов. Впрочем, и она не лишена недостатков: использование в технологии кислорода требует значительных инвестиций на его получение. Правда, в этом случае синтез-газ, в отличие от вырабатываемого по схеме предыдущего варианта, не содержит балластный азот, что, разумеется, играет положительную роль на стадии получения и особенно выделения конечного продукта – бензина или диметилового эфира.

Подчеркнем: все перечисленные процессы основаны на окислении метана при высоких температурах с доведением смеси до состава, близкого к равновесному. При этом резко уменьшается рабочий объем аппаратов, но появляется и негативная "черта": состав синтез-газа становится труднорегулируемым параметром. Наиболее доступным, по- видимому, является соотношение Н 2 /СО=1,5 -1,6. Коррекция состава при этом возможна, однако приводит к ухудшению экономических показателей.

Сотрудники нашего института детально изучили и процессы, протекающие на второй стадии, – синтез Фишера-Тропша и синтез метанола. Это привело, в частности, к пересмотру общепринятых представлений о механизме и закономерностях последнего, вплоть до составляющих химических реакций. Как было показано в нашей лаборатории кандидатом химических наук Г. И. Лин и другими, вошедшая в школьные учебники реакция СО+2Н 2 =СН 3 ОН на самом деле не протекает, а синтез метанола осуществляется в результате превращений диоксида углерода СО 2 +3Н 2 =СН 3 ОН+Н 2 О. Исходя из этого, мы разработали новые физико-химические основы процесса как такового, а потом предложили технологию получения нужного продукта, позволяющую вдвое увеличить производительность единицы объема реакторов.

И все же применительно к общей схеме переработки природного (попутного) газа синтез метанола остается слабым звеном из-за указанных выше термодинамических ограничений. Поэтому предпочтительным является синтез диметилового эфира, при котором эти ограничения практически исчезают. Действительно, тогда сначала по приведенной выше реакции образуется метанол, а затем он превращается в диметиловый эфир: 2СН 3 ОН=СН 3 ОСН 32 О. Если эти реакции протекают одовременно, то метанол непрерывно выводится из системы и не накапливается в значительных количествах. Так удается обойти пресловутые термодинамические ограничения.

Последующие исследования показали: диметиловый эфир (ДМЭ) является прекрасным сырьем для синтеза бензина, превосходящим метанол. В итоге возник альтернативный путь превращения синтез-газа в бензин, в котором обе стадии характеризуются более высокой эффективностью, чем в традиционном варианте. Наконец, совсем недавно было обнаружено, что ДМЭ – весьма перспективное дизельное топливо, а также конкурент сжиженного газа как энергоносителя для газотурбинных установок. Тем самым ДМЭ выдвинулся в ряд потенциально крупнотоннажных продуктов, масштабы потребления которых в перспективе могут оказаться сопоставимыми с таковыми для столь распространенных энергоносителей, как бензин и дизельное топливо.

ДМЭ в нормальных условиях – газ (температура кипения – 24,9 о С) и легко сжижается под давлением (5 атм. при 20 о С, 8 атм. – при 38 о С). Мало того, он нетоксичен – используется как наполнитель в аэрозольных упаковках. Однако быстро деградирует в атмосфере, поэтому может служить хладоагентом, заменителем фреонов, вызывающих опасения экологов. По физическим свойствам ДМЭ близок к традиционным пропан-бутановым смесям. Хотя по энергоемкости он в 1,5 раза (на единицу массы) уступает традиционному дизельному топливу, по остальным показателям его превосходство несомненно. Так, наиболее важная его характеристика – цетановое число – у ДМЭ составляет 55-60 против 40-55 для обычного дизельного топлива, а температура воспламенения – соответственно 235 и 250 о С. Присутствие в составе ДМЭ атома кислорода обеспечивает бездымное горение топлива, превосходный холодный пуск двигателя. Снижается уровень шума. Главное же преимущество ДМЭ как дизельного топлива – экологически чистый выхлоп. Низкое содержание оксидов азота обеспечивает выполнение наиболее жестких мировых экологических требований EVRO-3 и ULEV вообще без очистки выхлопа.

Читайте также:  Как снять лючок бензобака фольксваген поло седан

Адаптация автотранспорта к новому топливу, согласно оценкам зарубежных и отечественных специалистов, не встречает принципиальных препятствий. Серьезные затруднения возникают лишь в связи с необходимостью создания соответствующей инфраструктуры, ибо существующая сегодня (для пропан-бутановых смесей) может выполнить эту роль лишь частично.

В настоящее время ДМЭ получают дегидратацией метанола на оксиде алюминия и других катализаторах при объеме товарного производства около 150 тыс. т. в год. Но недавно фирмы Mobil (США) и Haldor Topsoe (Дания) осуществили процесс прямого синтеза ДМЭ из синтез-газа. Затем аналогичную разработку (жидкофазный процесс) выполнили фирма NKK (Япония) и наш институт с участием специалистов из других организаций (газофазный процесс). В последнем варианте процесс проходит под давлением 5-10 М Па и характеризуется весьма высокой эффективностью, что особенно наглядно при сравнении его с близким по технологии синтезом метанола. Например, если в первом случае в каталитическом реакторе превращается 60-80% оксидов углерода, то во втором – всего 15-20%. Соответственно резко возрастает производительность единицы объема реактора, что приводит к улучшению всех технико-экономических показателей. Процесс настолько эффективен, что в нем может быть использован "бедный" синтез-газ, получаемый при окислении природного газа воздухом и содержащий 50- 60% азота и всего 10-15% оксида углерода.

В итоге прямой синтез ДМЭ из синтез-газа по разным оценкам оказывается на 5 -20% экономичнее синтеза эквивалентного количества метанола.

Правда, высокая эффективность процесса прямого синтеза ДМЭ из синтез-газа обусловливает выделение значительного количества тепла. Это требовало тщательной проработки инженерных решений. И В. Кубиков с соавторами создали специальный аппарат, обеспечивающий интенсивный отвод тепла из зоны реакции.

Осуществлена и последующая стадия получения бензина. Г. И. Лин с другими сотрудниками нашей лаборатории совместно с коллективом лаборатории, руководимой доктором химических наук Е. С. Мортиковым (Институт органической химии РАН), проведен синтез высокооктанового бензина непосредственно из синтез-газа через ДМЭ. Важно, что это моторное топливо также имеет экологические показатели, превышающие характерные для обычного бензина. Например, при октановом числе 92-93 в нем практически отсутствуют вредные примеси (бензол, дурол, изодурол), а низкое содержание непредельных углеводородов (

1%) обеспечивает хорошую стабильность.

Результаты проведенных исследований были реализованы в опытно- промышленной установке. В настоящее время на ней идут пуско- наладочные работы.

Значимость достигнутых результатов в перспективе выходит за рамки рассматриваемой проблемы. В первую очередь это относится к прямому синтезу ДМЭ из синтез-газа. Важной особенностью данного процесса является то, что в нем можно использовать синтез-газ в широком интервале составов; соотношение Н 2 /СО, которое в синтезе метанола должно быть выше 2, в синтезе ДМЭ может варьировать в широких пределах, в том числе 1:1. Именно такой или близкий к нему состав имеет синтез-газ, который можно получить из угля, древесных остатков и других источников углерода. Таким образом, двигаясь дальше по намеченному нами пути, можно создавать производства моторных топлив из разнообразных, в том числе возобновляемых сырьевых источников.

Доктор химических наук А. Я. РОЗОВСКИЙ, заведующий лабораторией кинетики Института нефтехимического синтеза им. А. В. Топчиева РАН

Блог с оплатой за действия.

Пропан и этан – это газы, простейшие из углеводородов, относятся к алканам. Химические формулы их C3H8 – пропан и C2H6 – этан. Этан применяется в качестве сырья при производстве этилена, пропан же сам по себе служит топливом, как не смешанный ни с чем, так и в смеси с другими составляющими углеводородами.

Для лабораторного получения пропана будут необходимы два газа – этан и метан. Отдельно друг от друга их подвергают обработке галогенами (производится хлорирование) под действием облучения ультрафиолетовым светом. Необходимость облучения обусловлена необходимостью получения свободных радикалов, инициирующих реакцию.

В процессе происходит следующие реакции:
СН4+Cl2=CH3Cl +HCL – происходит образование хлористого метана и серной кислоты
C2H6+Cl2=C2H5Cl+HCl – происходит образование этана хлористого и соляной кислоты.
После проведения хлорирования радикалы подвергаются взаимодействию с вхождением в реакцию металлического натрия. Протекает реакция, после которой образуются пропан и хлорид натрия.

Реакция протекает по следующей схеме:
C2H5Cl+CH3Cl+2Na=C3H8+2NaCl
Эта реакция обычно называется «реакцией Вюрца», названа она в честь известного немецкого химика, первым получивший синтезированный симметричный углеводород с помощью реакции натрия на галогенные соединения алканов.
Можно применять для процесса хлорирования не только хлор, но и бром. Правда с использованием химически активного хлора реакция легче и быстрее проходит.
В промышленном производстве таким образом пропан не получают, так как процесс невыгоден и реакция проводится в основном в учебных заведениях в качестве химического эксперимента для закрепления лабораторного опыта.

Оцените статью
Добавить комментарий

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock detector