Как рассчитать диаметр цилиндра

C помощью нашего Онлайн-калькулятора для расчета объема цилиндра Вы можете быстро и точно рассчитать объем цилиндра. Для того, чтобы вычислить объем цилиндра, сначала выберите формулу, по которой Вы собираетесь произвести расчет. Объем цилиндра (в зависимости от исходных данных) можно вычислить двумя способами: 1. через высоту и радиус основания; 2. через высоту и площадь основания. Затем введите значения исходных данных для расчета (значение высоты цилиндра, значение радиуса основания цилиндра (или значение площади основания цилиндра) и нажмите кнопку "Рассчитать". Также Вы можете указать точность полученного результата, т.е. количество знаков после запятой, до которого будет округлен рассчитанный объем цилиндра.

Цилиндр – это геометрическое тело, которое ограничено двумя параллельными поверхностями, пересекающими цилиндрическую поверхность. Цилиндрическая поверхность называется боковой поверхностью цилиндра. Две параллельные поверхности называются основаниями цилиндра.

Объем цилиндра можно вычислить по двум формулам:

  1. через высоту цилиндра и радиус основания;
  2. через высоту цилиндра и площадь основания.

На данной странице калькулятор поможет рассчитать объем цилиндра онлайн. Для расчета задайте высоту, радиус или площадь основания. Вычисления производятся в миллиметрах, сантиметрах, метрах. Результат выводится в кубических сантиметрах, литрах и кубических метров.

Цилиндр – геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими её.

По высоте и радиусу

Формула объема цилиндра через высоту и радиус:

V = π·r²·h

Через площадь основания и высоту

Формула объема цилиндра через высоту и площадь основания:

Свойства

Через диаметр цилиндра можно рассчитать его радиус и периметр основания цилиндра. Радиус будет равен половине диаметра, а периметр – его произведению на число π. r=D/2 P=πD

Зная диаметр и высоту цилиндра, можно узнать площадь, объем, диагональ цилиндра и остальные параметры. Площадь боковой поверхности цилиндра представляет собой площадь прямоугольника, сторонами которого являются периметр основания цилиндра и его высота. Чтобы затем найти площадь полной поверхности цилиндра через диаметр и высоту, нужно к площади боковой поверхности добавить площадь верхнего и нижнего оснований, каждое из которых равно произведению числа π на четверть квадрата диаметра. S_(б.п.)=hP=πDh S_(п.п.)=S_(б.п.)+2S_(осн.)=πDh+(πD^2)/2=πD/2(2h+D) P=πD

Читайте также:  Как отрегулировать карбюратор на буханке

Объем цилиндра представляет собой площадь его основания, умноженную на высоту. Чтобы найти объем цилиндра через диаметр и высоту, нужно умножить квадрат диаметра на четверть числа π и на высоту. V=(πD^2 h)/4 P=πD

Диагональ цилиндра находится из прямоугольного треугольника, в котором она является гипотенузой, а катеты представлены высотой и диаметром цилиндра. По теореме Пифагора диагональ цилиндра через высоту и диаметр цилиндра равна квадратному корню из суммы их квадратов. (рис. 25.1) d=√(h^2+D^2 ) P=πD

Чтобы найти радиус сферы вписанной в цилиндр, если его диаметр равен высоте, нужно разделить диаметр цилиндра либо высоту на два, так как радиус вписанной сферы равен радиусу цилиндра. (рис.25.2) r_1=h/2=D/2 P=πD

Радиус сферы, описанной вокруг цилиндра, при соблюдении тех же условий (равенство диаметра цилиндра и его высоты) равен половине диагонали цилиндра.(рис.25.3) R=d/2=√(h^2+D^2 )/2

Оцените статью
Добавить комментарий

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock detector