Контактно-транзисторная система зажигания

Наиболее слабым звеном контактной (батарейной) системы зажигания являются контакты прерывателя. Ток высокого напряжения, проходя через контакты, приводит к их интенсивному износу, подгоранию, эрозии, в результате чего нарушается регулировка зазора и, как следствие, угол опережения зажигания, продолжительность и мощность искры.
Все это сказывается на надежности, долговечности системы зажигания и трудоемкости ее обслуживания.

Развитие электронной техники привело к созданию мощных полупроводниковых приборов, способных выполнять функции механических ключей, разрывающих электрическую цепь посредством управляющего тока небольшой величины, т. е. электронных реле. Такие реле, выполненные на транзисторах, пришли на смену механическим контактам, а батарейную систему зажигания сменила контактно-транзисторная.
В контактно-транзисторной системе зажигания механические контакты служат лишь для разрыва цепи, в которой протекает небольшой по величине ток, управляющий полупроводниковыми переходами транзистора, а транзистор, выполняя функцию реле, подает ток в первичную обмотку катушки зажигания. Благодаря этому удалось существенно повысить срок службы контактов и стабильность работы системы.

Работа контактно-транзисторной системы зажигания

Контактно-транзисторная система зажигания состоит, в основном, из тех же элементов, что и классическая батарейная, и отличается от неё наличием транзистора, резисторов и отсутствием конденсатора, ранее шунтировавшего контакты прерывателя.

Работает эта система зажигания следующим образом (рис. 1).
Когда контакты прерывателя Пр разомкнуты, транзистор V закрыт, и ток в первичной обмотке катушки зажигания отсутствует.
При замыкании контактов транзистор V открывается и через первичную обмотку катушки зажигания начинает протекать ток, нарастающий от нуля до некоторого значения, определяемого параметрами первичной цепи и временем, в течение которого контакты замкнуты. В сердечнике катушки накапливается электромагнитная энергия.

При размыкании контактов прерывателя транзистор V закрывается, и ток в первичной обмотке w1 катушки зажигания резко уменьшается. В этом случае во вторичной обмотке возникает высокое напряжение w2, которое поступает на контакт распределителя и переносится к соответствующей свече зажигания. Резистор R2 служит для ограничения тока базы транзистора, а резистор R1 обеспечивает запирание транзистора, когда контакты прерывателя разомкнуты.

Особенностью такой системы зажигания является то, что в ней контакты прерывателя коммутируют только незначительный ток базы транзистора, в тоже время ток через первичные обмотки катушки зажигания коммутирует транзистор.
При этом вторичное напряжение в катушке зажигания может быть повышено, поскольку увеличение тока разрыва уже не ограничено электроэрозионной стойкостью контактов прерывателя, а зависит только от параметров транзистора.

Однако следует иметь в виду, что преимущества транзисторной системы зажигания могут быть реализованы лишь при применении специальной катушки зажигания, которая должна иметь первичную обмотку с низким омическим сопротивлением, малой индуктивностью и большим коэффициентом трансформации. В этом случае необходимые энергия искрообразования и вторичное напряжение достигаются соответствующим увеличением тока разрыва и коэффициентом трансформации.

К недостаткам транзисторных систем зажигания следует отнести большую потребляемую мощность. Это связано с необходимостью увеличения тока разрыва. Кроме того, мощные транзисторы, используемые в таких системах, требуют эффективного охлаждения во время работы, а электронные блоки систем зажигания обязательно должны иметь средства защиты от импульсных помех напряжением более 100 В.

Еще один недостаток транзисторной системы зажигания заключается в ее относительной сложности, обусловленной применением полупроводниковых приборов. Классическая контактная система зажигания состоит всего из нескольких элементов, которые даже специалист невысокой квалификации может легко проверить без специальных измерительных приборов и оборудования.
Состояние контактов прерывателя можно проверить просто визуально. Замена контактов не вызывает трудности, а зная характерные признаки неисправности катушки зажигания или распределителя можно устранить и проблемы, связанные с их отказом.
Для ремонта же или проверки электронного блока требуется специальное оборудование и персонал соответствующей квалификации.

Тем не менее, очевидные достоинства и простота их реализации предопределили широкое использование индуктивных систем зажигания на автомобильных двигателях.
Последние достижения в области создания транзисторных систем зажигания, т.е. использования высоковольтных транзисторов Дарлингтона, применение принципа нормирования времени накопления энергии, позволили практически устранить такие недостатки индуктивных систем, как большая зависимость вторичного напряжения от шунтирующего сопротивления на изоляторе свечи и от частоты вращения коленчатого вала.

Составной транзистор Дарлингтона был изобретен в 1953 году инженером Сидни Дарлингтоном (Sidney Darlington). Транзистор Дарлингтона является каскадным соединением двух (реже трех или более) биполярных транзисторов, включённых таким образом, что нагрузкой в эмиттерной цепи предыдущего каскада является переход база-эмиттер транзистора последующего каскада (то есть эмиттер предыдущего транзистора соединяется с базой последующего), при этом транзисторы соединяются коллекторами. Такое соединение позволило улучшить электрические характеристики соединяемых по схеме Дарлингтона транзисторов.

Благодаря перечисленным новшествам, тиристорные системы зажигания с емкостным накопителями потеряли часть преимуществ перед индуктивными системами зажигания, и практически не используются на автомобильных двигателях.

Исторически сложилось так, что для первых бензиновых моторов использовалась батарейная (аккумуляторная) система зажигания, основанная на эффекте самоиндукции. Самой первой была контактная, ставшей впоследствии классической, система. По мере совершенствования автомашины развивались и его отдельные компоненты, так появилась контактно транзисторная система зажигания. На примере сравнения этих двух систем можно проследить, как происходило развитие самого автомобиля.

О принципах работы классической системы зажигания

Надо сразу отметить, несмотря на простоту, изящество примененных технических решений. Схема подобной системы приведена на рисунке ниже:

Работа осуществляется следующим образом – при повороте ключа в замке через контакты прерывателя и обмотку (первичную) катушки, называемой еще бобиной, начинает протекать ток. Когда размыкаются контакты прерывателя, цепь разрывается, и в первичной обмотке бобины прекращается ток. Но благодаря эффекту самоиндукции в обмотке (вторичной) появляется напряжение. А так как число витков обеих обмоток существенно различается (во вторичной витков больше), величина вторичного напряжения может достигать десятков киловольт.
Это напряжение, через распределитель, поступает на нужную свечу, где возникает искра, которая и поджигает бензин в цилиндрах двигателя.
Все просто и красиво, и такая схема прекрасно работала на первых моторах.
Недостатки, которыми она обладает, начали проявляться, когда у бензинового двигателя стало:

  • увеличиваться число цилиндров;
  • повышаться число оборотов, развиваемых двигателем, двигатели стали высокооборотистыми;
  • возможным увеличивать степень сжатия в цилиндрах;
  • практиковаться использование обедненных смесей.
Читайте также:  Признаки неисправности электронной педали газа

Кроме того, недостатком надо считать низкую надежность, в первую очередь обусловленную обгоранием контактов прерывателя, из-за чего порой переставала работать вся система зажигания. Естественно, никто с этим мириться не собирался, и появилась контактно транзисторная система зажигания.

Новый этап развития

Основным элементом, благодаря которому новая схема приобрела улучшенные характеристики, относительно прежней, классической, стал транзистор. Причем он явился причиной, что контактно-транзисторная система зажигания получила новый узел – коммутатор.

Отличительной особенностью, присущей транзистору, является то, что небольшой ток, поступающий на управление (в базу), позволяет управлять током гораздо большей величины, протекающим через прибор.

Контактно транзисторная система зажигания, несмотря на незначительные, на первый взгляд, изменения и сохранение принципа работы, приобрела новые свойства, недоступные классической системе. Но прежде чем оценивать достоинства и недостатки, которыми обладает контактно-транзисторная схема, необходимо коснуться отличий в работе.

Главное отличие от классического зажигания заключается в том, что прерыватель воздействует не на бобину, а на базу транзистора. В остальном контактно-транзисторная схема работает так же, как обычная система зажигания. При прерывании, в первичной обмотке бобины протекания тока, во вторичной наводится высоковольтное напряжение. Не касаясь деталей внутреннего устройства коммутатора и его подключения, можно отметить, что транзисторная схема зажигания даже в таком упрощенном виде обладает следующими достоинствами:

Контактно-транзисторное управление процессами, происходящими в катушке зажигания, обеспечивает возможность увеличить в первичной обмотке ток, вследствие чего:

  1. можно повысить величину вторичного напряжения;
  2. увеличить между электродами свечи зазор;
  3. улучшить процесс искрообразования, сделать его более устойчивым, а также улучшить запуск двигателя при пониженной температуре;
  4. повысить количество оборотов и увеличить мощность двигателя.

Однако подобная контактно-транзисторная схема требует использования катушки зажигания с отдельными обмотками (первичной и вторичной).

Повысилась надёжность: контактно-транзисторная система позволяет снизить нагрузку на контакты прерывателя, уменьшив значение проходящего через них тока, следствием чего является уменьшение подгорания контактов.
Однако не все так хорошо, как кажется с первого взгляда. Подобная контактно-транзисторная система зажигания имеет и свои недостатки. Вызваны они использованием прерывателя, т.е. система начинает работать и формировать искру, когда контактно разрывается цепь прохождения тока в обмотке бобины. Величина тока, поступающего в базу транзистора, существенно влияет на его работу, и уменьшение тока из-за качества контактов скажется на работе всей системы.

Значение контактно-транзисторной схемы в развитии автомобиля

В данном случае мы рассмотрели только два начальных этапа на пути развития системы зажигания автомобиля. В дальнейшем она претерпела гораздо более значительные изменения, но контактно-транзисторная схема была первой. Именно на ней были отработаны возможные варианты повышения ее эффективности, в частности, уход от классического, контактного зажигания, и намечены пути развития в сторону использования бесконтактных способов получения искры.
" alt="">
Контактно-транзисторная система зажигания оказалась первым шагом, в совершенствовании классического подхода к получению искры на бензиновом ДВС, и явилась закономерным этапом развития автомобиля в целом, и его отдельных узлов в частности.

Изучение устройства и принципа действия автомобиль­ной контактно-транзисторной системы зажигания.

2. Краткие сведения

Контактно-транзисторная система зажигания, электри­ческая схема которой представлена на рис. 5.1., состоит из следующих основных элементов: транзисторного коммута­тора I TК 102, выпол­няющего роль усилителя, катушки зажи­гания III преобразующей по­лучаемый от источника ток низ­кого напряжения в ток высокого на­пряжения, необходимый для образования искры в свечах; блока до­бавочных сопро­тивлений II; прерывателя-распределителя IV, распо­ложенных на общем валике и служащих для прерывания тока в пер­вич­ной цепи катушки и распределения высокого напряжения по све­чам зажигания, и искровых свечей зажигания.

Транзисторный коммутатор ТК 102 (рис. 5.1 и 5.2), корпус 1 которого выполнен из алюминиевого сплава АЛ-2 и снабжен ох­лаждающими ребрами, включает в себя мощный германиевый транзис­тор VT(2) типа ГТ701А, кремниевый стабилитрон VD2 типа Д817В, диод VД1 типа Д220, специ­альный двухобмоточный импульсный трансформатор Т1(5), конденсаторы С1=1 мкФ и С2=50 мкФ, сопротивления R2=27 ОМ и R1=2 Ом.

Транзистор, работающий в режиме ключа, крепится на корпусе коммутатора. Для обеспечения герметичности и улучшения теплоотвода транзистор иногда заливается эпок­сидной смолой с наполнителем из окиси алюминия 6. Снизу корпус коммутатора закрыт пластиной, выполненной из алюминиевого листа 8.

Импульсный трансформатор T1, предназначенный для обеспе­чения надежного и активного запирания транзистора, содержит две обмотки: первичную w ’ 1, которая намотана в три ряда на набран­ный из пластин сердечник, и вторичную w ’ 2. Пер­вичная обмотка состоит из 60 витков медной эмалированной проволоки диаметром 0,72. 0,78 мм. Вторичная обмотка со­держит 500 витков из медной эмалированной проволоки диа­метром 0,29. 0,33 мм. Начало вторич­ной обмотки и конец первичной соединены между собой.

Рис. 5.1. Электрическая схема контактно-транзисторной системы зажигания:

I – транзисторный коммутатор; II – блок добавочных сопротивлений; III – катушка зажигания; IV – прерыватель-распределитель; VT – транзистор ГТ701А; VD1 – диод Д7Ж; VD2 – стабилитрон Д817В; T1 – импульсный трансформатор; R2 – резистор УЛИ-0,25-27; С1 – конденсатор БМБ-160-1; С2 – конденсатор К50-6; R1 – резистор УЛИ-0,25-2; GB – аккумуляторная батарея; SA – выключатель зажигания.

Первичная и вторичная обмотки намотаны без меж­слойной изо­ляции. Между собой они изолированы кабельной бумагой. Обмотки трансформатора и его поверхность пропи­таны специальным лаком.

Блок защиты 9 транзистора от перенапряжений, кото­рые возни­кают на первичной обмотке катушки зажигания w1, состоит из кремниевого стабилитрона VD2 и германиевого диода VD2.На­пряжение стабилизации стабилитрона VD2выбрано так, чтобы оно суммируясь с напряжением питания, не превышало предельно допусти­мого напряжения эмиттер-коллекторного перехода транзистора , равного 100 В.

Рис. 5.2. Транзисторный коммутатор ТК-102

1 – корпус коммутатора; 2 – транзистор; 3 – теплоотвод блока защиты; 4 – электрический конденсатор; 5 – импульсный трансформатор; 6 – эпоксидная смола; 7 – зажимы блока защиты; 8 – пластина; 9 – блок защиты транзистора.

Читайте также:  Признак неисправных свечей зажигания

Диод VD1 включен встречно стабилитрону и препятст­вует про­теканию электрического тока от аккумуляторной ба­тареи через ста­билитрон в прямом направлении, в противном случае первичная об­мотка катушки зажигания w1 была бы шунтирована стабилитро­ном VD2.

Для улучшения процесса переключения германиевого транзис­тора служит цепочка, состоящая из конденсатора С1 марки MБМ-160-1,0±10% (предельное напряжение 160 В, ем­кость 1 мкФ) и резистора R1 марки УЛИ 0,25-2±2%. Все приборы блока защиты зали­ты эпоксидной смолой.

Электрический конденсатор С2(4) марки К-50-6 (ем­кость 50 мкФ, напряжение 25 В); установленный внутри кор­пуса отдельно от блока защиты, защищает транзистор VT от случайных перена­пряжений, которые могут возникнуть в цепи питания.

В контактно-транзисторной системе зажигания исполь­зуется 12-вольтовая катушка зажигания типа Б114 (рис. 5.3). Катушка зажигания Б114 маслонаполненная и отличается от катушек клас­сической батарейной системы зажигания в ос­новном обмоточными данными и трансформаторной связью первичной и вторичной обмоток, примененной во избежание перегрузки транзистора дополнительным напряжением при разрядных процессах во вторичной цепи.

Рис. 5.3. Катушка зажигания Б114

1 – сердечник; 2 – кольцевой магнитопровод; 3 – вторичная обмотка; 4 – первичная обмотка; 5 – кожух; 6 – изолятор; 7 – крышка; 8 – зажим; 9 – контактная пружина; 10 – клемма высокого напряжения; 11 – прокладка.

Сердечник 1 и кольцевой магнитопровод 2 катушки за­жигания изготовлены из листов электротехнической стали, на поверхности которых имеется слой окалины, что уменьшает вихревые токи.

На изоляционную втулку из электротехнического кар­тона на­матывается вторичная обмотка катушки зажигания 3, которая со­держит 41000 витков из провода марки ПЭЛ диа­метром 0,06 мм. Со­противление вторичной обмотки состав­ляет 20,5 кОм, индуктивность 170 Гн.

Для предупреждения пробоя изоляции обмотки осо­бенно в ко­нечных и начальных рядах, где потенциал дости­гает наибольшей величины, первые восемь рядов и последние изолированы друг от друга тремя слоями конденсаторной бу­маги КOH-1 толщиной 0,022 мм; между остальными рядами прокладываются по 1 слою конденсаторной бумаги. Сверху вторичная обмотка изолируется несколькими слоями лакоткани, а затем кабельной бумаги. Первичную об­мотку 4 катуш­ки зажигания Б114 наматывают поверх вто­ричной, что облегчает отвод тепла от обмотки и кожуху при работе катушки. Первичная обмотка 4 содержит 180 витков из провода марки ПЭВ-1 диаметром 1,25 мм, намотана в пять рядов. Между каждым рядом проложена изоляция из кабель­ной бумаги. Сопротивление первичной обмотки составляет 0,45 Ом, индуктивность 0,0037 Гн. Коэффициент транс­фор­мации катушки равен 228, Первичная обмотка катушки зажи­гания Б114 вместе с блоком добавочных сопротивлений СЭ 107 (рис. 5.1) включена в цепь эмиттера транзистора VT.

Благодаря такой схеме включения транзистора весь ток, подво­димый от батареи, используется для наполнения энер­гии в катушке зажигания, и значительно облегчается отвод тепла от транзистора. Между вторичной и первичной об­мотки катушки зажигания проложе­на изоляция из электро­картона марки ЭВ. Обе катушки в сборе поме­щены в сталь­ной кожух 5, изготовленный методом глубокой вытяжки. Вторичная обмотка и сердечник, имеющие высокий потен­циал относи­тельно корпуса, изолируются от корпуса стеати­товым изолятором 6. Сверху катушка имеет крышку 7, кото­рая герметизирована с корпу­сом через бензомаслостойкую резиновую прокладку 11 с последующей завальцовкой ко­жуха. Крышка изготовлена из термореактивной пласт­массы. Выводы первичной обмотки 4 припаяны к зажимам 8, располо­женным к крышке. Один вывод вторичной обмотки прижат изолятором сердечника к корпусу катушки (на массу), а второй – высоковольт­ный вывод выведен под контактную пружину 9, соединяющуюся с вы­водной клеммой высокого напряжения 10.

Первичная обмотка 4 обычно по высоте больше вторич­ной 3, что дает возможность увеличить потокосцепление ме­жду обмотками и уменьшить емкость между вторичной об­моткой и металлическим кожухом, а также улучшить условия теплоотдачи и уменьшить сред­нюю длину витка. Для улучшения изоляции первичную и вторичную обмотки подвергают вакуумной пропитке трансформаторным маслом, а затем в кожух зали­вают трансформаторное масло ТКП, что поз­воляет значи­тельно улучшить передачу тепла от обмоток к корпу­су.

Рис. 5.4. Добавочные резисторы.

1 – резистор Rд1; 2 – резистор Rд2; 3 – корпус

Добавочные сопротивления катушки зажигания Rд1 и Rд2 выполнены из константанового провода в виде спиралей сопротив­лением по 0,5 Ома каждое и размещены в отдельном блоке СЭ 107 (рис. 5.4). Сопротивление Rд2 с учетом улуч­шения пуска дви­гателя внутреннего сгорания закорачивается через контактную пластину тягового реле стартера. Блок до­бавочных сопротивлений СЭ 107 имеет три изолированных вывода К, ВК и ВК-Б. Клемма К блока соединяется с клеммой К транзисторного коммутатора. Клем­ма ВК соединяется про­водом с дополнительным контактом тягового реле стартера или с выводом дополнительного реле стартера. Клем­ма ВК-Б соединяется через замок зажигания с плюсовой клеммой аккумуляторной батареи.

Блок добавочных сопротивлений СЭ 107 монтируется под капо­том вблизи катушки зажигания и крепится двумя самонарезающимися винтами диаметром 6 мм с пружинными шайбами.

Рис. 5.5. Прерыватель-распределитель Р4-Д.

1 – валик; 2 – корпус; 3 – втулка; 4 – привод кулачка; 5 – ротор; 6 – центробежный регулятор; 7 – неподвижная пластина; 8 – подвижная пластина; 9 – шариковый подшипник; 10 – кулачок; 11 – втулка; 12 – крышка; 13 – пружинящая пластина; 14 – контактный уголек; 15 – боковые выводы; 16 – октан-корректор.

Для прерывания в необходимый момент цепи низкого напряже­ния и для распределения высокого напряжения по свечам в соот­ветствии с порядком работы цилиндров двига­теля служит прерыва­тель-распределитель типа Р4 Д для ав­томобиля ЗИП-130 и PI3 Д для автомобиля ГАЗ-53А (рис. 5.5). В прерывателе-распредели­теле расположены также центробежный и вакуумный регуляторы опережения зажига­ния.

В чугунном корпусе 2 прерывателя-распределителя за­прес­сована бронзовая втулка 3, в ней вращается валик 1 при­вода кулачка 4 прерывателя, ротора 5 распределителя и цен­тробежного регулятора 6 опережения зажигания. К корпусу 2 двумя винтами крепится неподвижная пластина 7 прерыва­теля. Подвижная пласти­на 8 прерывателя устанавливается на шариковом подшипнике 9, обеспечивающем легкость движе­ния пластины при работе вакуумно­го регулятора. Контакты прерывателя вольфрамовые.

Кулачок 10 напрессован на втулку 11. Выступы кулачка име­ют специальный профиль, обеспечивающий быстрое раз­мыкание кон­тактов, а, следовательно, и уменьшение искрения между ними, а так­же плавное безударное замыкание контак­тов, что значительно сни­жает их вибрацию. Зазор между кон­тактами прерывателя в преде­лах 0,30. 0,40 мм регулируют смещением неподвижного контакта вокруг оси рычажка при помощи эксцентрика.

Читайте также:  Электрическая обманка лямбда зонда своими руками

Ротор 5 и крышка 12 распределителя выполнены из специ­ального пресспорошка. Крышку крепят двумя пружинящими пластинами 13. Уголёк 14 с пружиной подводит ток высокого напряжения от цен­трального ввода крышки к электроду ро­тора. Уголёк одновременно служит и для снижения уровня радиопомех. Величина сопротивле­ния уголька составляет 8000. 14000 Ом. В боковые выводы 15 крышки устанавли­вают высоковольтные провода от свечей зажига­ния.

К корпусу прерывателя-распределителя прикреплен ва­куум­ный регулятор опережения зажигания. Тяга вакуумного регулятора соединена с подвижной пластиной 8 прерывателя. Установочный угол опережения зажигания регулируют гай­ками октан-корректо­ра 16.

Вакуумный регулятор позволяет изменять величину угла опережения зажигания в зависимости от нагрузки двига­теля, т.е. от степени открытия дроссельной заслонки карбю­ратора.

Центробежный регулятор дает возможность изменять угол опережения зажигания в зависимости от частоты вра­щения колен­чатого вала двигателя.

Совместная работа центробежного и вакуумного регу­ляторов устанавливает наиболее выгодную величину угла опережения зажи­гания при различных режимах работы дви­гателя, что обеспечивает повышение мощности и экономич­ности двигателя. Вследствие малой величины тока, разры­ваемого контактами прерывателя, в прерыва­телях-распреде­лителях контактно-транзисторной системы зажига­ния отсут­ствует конденсатор, который имеется в распределителях классической батарейной системы зажигания для снижения искре­ния между контактами.

Принцип работы контактно-транзисторной системы за­жигания заключается в следующем (рис. 5.1). При включении выключателя зажигания и при замкнутом состоянии контактов прерывате­ля от аккумуляторной батареи GB через первичную обмотку ка­тушки зажигания w1, через эмиттер-базовый переход тран­зистора VT, через первичную обмотку импульсного трансфор­матора w ’ 1 и далее через замкнутые контакты прерывателя ПР начинает протекать ток управления до 0,8 А. В результате про­хождения тока управления через эмиттерный переход открывается транзистор , электриче­ское сопротивление эмиттер-коллек­торного перехода резко снижается. Ток первичной цепи величи­ной до 8 А будет про­ходить от аккумуляторной батареи через вы­ключатель зажи­гания, дополнительные резисторы, первичную обмот­ку ка­тушки зажигания, эмиттер-коллекторный переход транзи­стора – на массу.

При размыкании контактов прерывателя транзистор пе­реходит в состояние отсечки, т.е. запирается, вследствие чего первичный ток, а, следовательно, и созданное им магнитное поле исчезает. Ис­чезающее магнитное поле индуктирует во вторичной обмотке катушки зажигания Э.Д.С., равную 17. 30 кВ, достаточную для пробоя иск­рового промежутка свечи.

Резкое прерывание тока и активное запирание транзи­стора обеспечивается применением импульсного трансфор­матора. При размы­кании контактов прерывателя во вторич­ной обмотке импульсного трансформатора индуктируется Э.Д.С., которая подается к эмиттер-базовому переходу транзи­стора в запирающем направлении, т.е. «минусом» на эмиттер, а «плюсом» на базу, вследствие чего ускоряется за­пирание транзистора и поэтому ускоряется преры­вание тока в первичной обмотке катушки зажигания. Индуктируе­мое во вторичной обмотке катушки зажигания высокое на­пряжение подает­ся на ротор распределителя и затем на свечи зажигания. Контактно-транзисторная система зажигания по сравнению с классической бата­рейной системой обеспечивает большее значение вторичного напряже­ния и энергии искро­вого разряда, повышает срок службы электродов свечей, а также устраняет эрозию и износ контактов прерывателя, что обеспечивает снижение возможных разрегулировок системы зажи­гания в эксплуатации.

3. Учебные пособия, приспособления и инструменты.

3.1. Комплект приборов контактно-транзисторной сис­темы зажи­гания, подлежащий разборке и сборке. Отдельные детали и узлы, учебные плакаты.

3.2. Приспособления и инструменты – отвертка, гаечные ключи 9-11 мм.

4. Порядок проведения работы

4.1. Изучить устройство транзисторного коммута­тора катушки зажигания, прерывателя-распределителя и блока добавочных сопро­тивлений.

4.2. Изучить принцип работы контактно-транзистор­ной системы зажигания.

4.3. Произвести разборку транзисторного коммута­тора.

4.4. Ознакомиться с отдельными узлами и элемен­тами транзис­торного коммутатора и собрать коммутатор в последователь­ности, обратной разборке.

4.5. Разобрать катушку зажигания.

4.6. Нарисовать эскиз магнитопровода катушки зажи­гания.

4.7. Ознакомиться с отдельными деталями катушки зажигания и собрать её в последовательности, обратной разборке.

4.8. Ознакомиться с устройством блока добавочных сопротивле­ний.

4.9. Ознакомиться с устройством прерывателя-рас­пределителя.

4.10. Ознакомиться с устройством центробежного и вакуум­ного регуляторов опережения зажигания.

5. Содержание отчета

5.1. Тип изучаемой системы зажигания, технические характе­ристики катушки и прерывателя-распределителя.

5.2. Краткое описание устройства и принципа дейст­вия кон­тактно-транзисторной системы зажигания.

5.3. Электрическая схема контактно-транзисторной системы зажигания.

5.4. Эскиз магнитной цепи катушки зажигания.

5.5. Назначение и параметры элементов схемы кон­тактно-транзисторной системы зажигания.

5.6. Эскизы центробежного и вакуумного регулято­ров опере­жения зажигания.

5.7. Преимущества и недостатки рассматриваемой сис­темы зажигания.

6. Контрольные вопросы

6.1. Из каких основных элементов состоит кон­тактно-транзис­торная система зажигания и как они устроены?

6.2. Объяснить назначение импульсного трансформа­тора.

6.3. Объяснить принцип работы контактно-транзистор­ной систе­мы зажигания.

6.4. Почему добавочное сопротивление выполняется двухсек­ционным?

6.5. Каким образом фиксируется обмотки в корпусе ка­тушки зажигания?

6.6. Какие электротехнические материалы использу­ются в ка­тушке зажигания?

6.7. Почему вторичная обмотка катушки зажигания расположена внутри, а первичная снаружи?

6.8. В каком режиме работает транзистор?

6.9. В чем заключаются преимущества и недос­татки контактно-транзисторной системы зажигания по сравнению с батарей­ной?

6.10. Чем отличается катушка зажигания контактно-транзисторной системы от обычной классической системы?

6.11. Объяснить работу центробежного регулятора опережения зажигания.

6.12. Объяснить работу вакуумного регулятора опе­режения зажигания.

1. Банников С.П. Электрооборудование автомобилей и тракторов. «Транспорт», М., 1977.

2. Боровских Ю.И. Электрооборудование автомоби­лей. «Транспорт»,М., 1971.

3. Барабанов В.Е., Василевский В.М., Левин С.М. Элек­трообору­дование тракторов и автомобилей. «Колос», М., 1974.

4. Ильин A.M., Тимофеев Ю.Л., Ваняев В„Л. Электро­оборудование автомобилей. «Транспорт», 1982.

5. Резник A.M., Орлов В.П. Электрооборудование авто­мобилей. «Транспорт», М., 1981.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9989 – | 7783 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Прошу поделиться этой записью с друзьями:

Добавить комментарий

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock detector